

Application Programming Interface
Architecture

Version: 2.0

Date: September 12, 2018

Author: MedBiquitous Technical

Steering Committee

Contact: vsmothers@jhmi.edu

MedBiquitous Application Programming Interface Architecture Version History

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page2

Version History

Version

No.

Date Changed By Changes Made

1.0 10 Oct 2016 Version 1.0

2.0 12 Sept 2018 Version 2.0

 Allow HTTP Patch

 Refine rules for support of older versions

 Handling advanced API requirements

MedBiquitous Application Programming Interface Architecture MedBiquitous Standards Public License and
 Terms of Use

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page3

MedBiquitous Standards Public License and Terms of Use

MedBiquitous Standards (including schemas, specifications, guidelines, sample documents, sample

code, Web services description files, and related items) are provided by the copyright holders under the

following license. By obtaining, using, and or copying this work, you (the licensee) agree that you have

read, understood, and will comply with the following terms and conditions.

The Consortium hereby grants a perpetual, non-exclusive, non-transferable, license to copy, use, display,

perform, modify, make derivative works of, and develop the MedBiquitous Standards for any use and

without any fee or royalty, provided that you include the following on ALL copies of the MedBiquitous

Standards or portions thereof, including modifications, that you make.

1. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist,

the following notice should be used: "Copyright © [date of release] MedBiquitous Consortium.

All Rights Reserved. http://www.medbiq.org"

2. Notice of any changes or modification to MedBiquitous Standards files.

3. Notice that any user is bound by the terms of this license and reference to the full text of this

license in a location viewable to users of the redistributed or derivative work.

In the event that the licensee modifies any part of the MedBiquitous Standards, it will not then

represent to the public, through any act or omission, that the resulting modification is an official

specification of the MedBiquitous Consortium unless and until such modification is officially adopted.

THE CONSORTIUM MAKES NO WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, WITH

RESPECT TO ANY COMPUTER CODE, INCLUDING SCHEMAS, SPECIFICATIONS, GUIDELINES, SAMPLE

DOCUMENTS, WEB SERVICES DESCRIPTION FILES, AND RELATED ITEMS. WITHOUT LIMITING THE

FOREGOING, THE CONSORTIUM DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY, EXPRESS OR IMPLIED, AGAINST

INFRINGEMENT BY THE MEDBIQUITOUS STANDARDS OF ANY THIRD PARTY PATENTS, TRADEMARKS,

COPYRIGHTS OR OTHER RIGHTS. THE LICENSEE AGREES THAT ALL COMPUTER CODES OR RELATED ITEMS

PROVIDED SHALL BE ACCEPTED BY LICENSEE "AS IS". THUS, THE ENTIRE RISK OF NON-PERFORMANCE OF

THE MEDBIQUITOUS STANDARDS RESTS WITH THE LICENSEE WHO SHALL BEAR ALL COSTS OF ANY

SERVICE, REPAIR OR CORRECTION.

IN NO EVENT SHALL THE CONSORTIUM OR ITS MEMBERS BE LIABLE TO THE LICENSEE OR ANY OTHER

USER FOR DAMAGES OF ANY NATURE, INCLUDING, WITHOUT LIMITATION, ANY GENERAL, DIRECT,

INDIRECT, INCIDENTAL, CONSEQUENTIAL, OR SPECIAL DAMAGES, INCLUDING LOST PROFITS, ARISING

OUT OF ANY USE OF MEDBIQUITOUS STANDARDS.

LICENSEE SHALL INDEMNIFY THE CONSORTIUM AND EACH OF ITS MEMBERS FROM ANY LOSS, CLAIM,

DAMAGE OR LIABILITY (INCLUDING, WITHOUT LIMITATION, PAYMENT OF ATTORNEYS' FEES AND COURT

MedBiquitous Application Programming Interface Architecture MedBiquitous Standards Public License and
 Terms of Use

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page4

COSTS) ARISING OUT OF MODIFICATION OR USE OF THE MEDBIQUITOUS STANDARDS OR ANY RELATED

CONTENT OR MATERIAL BY LICENSEE.

LICENSEE SHALL NOT OBTAIN OR ATTEMPT TO OBTAIN ANY PATENTS, COPYRIGHTS OR OTHER

PROPRIETARY RIGHTS WITH RESPECT TO THE MEDBIQUITOUS STANDARDS.

THIS LICENSE SHALL TERMINATE AUTOMATICALLY IF LICENSEE VIOLATES ANY OF ITS TERMS AND

CONDITIONS.

The name and trademarks of the MedBiquitous Consortium and its members may NOT be used in

advertising or publicity pertaining to MedBiquitous Standards without specific, prior written permission.

Title to copyright in MedBiquitous Standards and any associated documentation will at all times remain

with the copyright holders.

MedBiquitous Application Programming Interface Architecture Table of Contents

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page5

Table of Contents

Acknowledgements ... 6

1. Introduction .. 7

2. Service Definitions .. 9

2.1 REST Concepts .. 9

2.2 MedBiquitous REST Payload Content Types ... 9

2.3 Design Principles ... 10

3. API Signatures and Resource URIs .. 12

3.1 URLs .. 12

3.2 Persistent URI’s ... 12

4. Versioning ... 12

6. Binary Attachments... 14

7. HTTP Responses .. 17

7.1 HTTP Redirection Codes ... 17

7.2 HTTP Error Codes .. 17

7.3 Common Error Resource .. 18

8. Security ... 20

8.1 Digital signatures .. 20

9. Sample API .. 21

9.1 Certification API (Sample) ... 21

9.1.1 CheckCertification ... 21

10. References .. 24

MedBiquitous Application Programming Interface Architecture Acknowledgements

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page6

Acknowledgements

The following members of the Technical Steering Committee contributed to this architecture document.

 Joel Farrell, Chair

 Dan Rehak, Learning Technologies Architect

 Prasad Chodavarapu, American Board of Family Medicine

 James Fiore, American Board of Surgery

 Steve Kenney, American College of Surgeons

 Scott Kroyer, lumināt

 Andy Rabin, CECity

 Emmanouil Skoufos, Elsevier Clinical Solutions

 Valerie Smothers

 Luke Woodham, St. George's University of London

MedBiquitous Application Programming Interface Architecture Introduction

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page7

1 Introduction
This document defines the MedBiquitous Application Programming Interface (API) architecture, a set of

definitions, structures, relationships and rules to be used by working groups when they define

MedBiquitous standard APIs. The objective of the API architecture is to assure that working groups

specify APIs that are light-weight, easy to implement, secure and extensible. The architecture also tries

to assure that all MedBiquitous API specifications are consistent with each other. Therefore, the

primary audience of this document is MedBiquitous Working Groups with API implementers being a

secondary audience.

The architecture defines how programmatic interactions are to be made between member

organizations via internet protocols. As such, the architecture is based on Representational State

Transfer (REST) sending and receiving requests and responses whose payloads are encoded in Extensible

Markup Language (XML) or JavaScript Object Notation (JSON).

The API exposes information as a hierarchy of resources that forms a logical model of objects managed

by a MedBiquitous compliant organization. This logical model is implemented at the Web server or Web

application server layer. The physical storage and management of this logical model is provided by

back-end systems and implemented in anyway the organization chooses. An implementation of the API

uses services provided by the backend systems, but these systems should not show through the API

Figure 1. API Relationships

MedBiquitous Application Programming Interface Architecture Introduction

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page8

Layer. Interactions between a client application and the API are via standard Web protocols using

standard Web security models.

MedBiquitous Application Programming Interface Architecture Service Definitions

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page9

2 Service Definitions

2.1 REST Concepts
All APIs will be implemented according to the REST model. In this model, the API uses HTTP methods to

define operations on a set of resources. These resources are exposed via hierarchical URI’s much like a

directory tree. REST uses HTTP methods according to their protocol definition. These methods

correspond to a simple set of standard operations as follows:

HTTP POST - Create a new resource

HTTP GET - Retrieve a copy of a resource

HTTP PUT - Update a resource

HTTP DELETE - Delete a resource

Other HTTP methods can be used if needed, such as HTTP PATCH for partial updates, but MedBiquitous

API’s should, if at all possible, stay with these four methods that correspond to a pure and easily used

REST implementation. Resources can be any of the objects normally specified in the MedBiquitous

specifications, such as Heath Care Professionals, Learners, Credentials, or Competencies.

All interactions are stateless. There is no concept of a session between the two parties in the API

interaction.

In keeping with the security concepts below, all API’s will require HTTPS (Secure HTTP). This generally

implies an HTTP connection over the Secure Sockets Layer (SSL). All MedBiquitous REST services must

follow the REST Web Service Design Guidelines [MedBiq REST] previously published

2.2 MedBiquitous REST Payload Content Types
The input and output payloads may support both XML and JSON encodings although a particular

implementation does not have to support both. The content type requested must be included in the

HTTP header. All services must support content negotiation to respect this HTTP content type. If the

requested content type is not supported, return “type not available” (406 - Not Acceptable).

MedBiquitous uses two content types for its use of XML and JSON. They are:

For XML Payloads - application/xml or text/xml

For JSON Payloads - application/json

For example, to request an XML response include the following in the HTTP header:

 Accept: application/xml

MedBiquitous Application Programming Interface Architecture Service Definitions

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page10

If the client includes no Accept-headers, the API will default to application/json. If the client specifies

both application/json and application/xml in the header, the API will also default to application/json.

This document makes the distinction between data models, which define information, relationships,

possible values, and characteristics of some real world entity; and payloads which define the specific

data that is exchanged in an API call. For example, the Professional Profile is a data model of a

Healthcare Professional. The data returned when querying a particular professional’s certification would

be a payload. MedBiquitous will not create data models in both JSON and XML. Current XML document

standards define the current data models. However, when working groups define new data models (for

example, when working on a new specification), the ability to support JSON and XML payloads in REST

APIs must be considered.

2.3 Design Principles
MedBiquitous APIs must adhere to the following design principles:

 APIs must be as specific and granular as possible. Input or output payloads should correspond

to types and vocabularies defined in MedBiquitous document standards. Payloads do not have

to be proper document-fragments of full MedBiquitous document. However, if a document-

fragment (or its JSON equivalent) contains the needed information, it should be used as is,

instead of inventing a new representation.

 Related to the above, new MedBiquitous Document Standards should be easily decomposable

into document-fragments that could be appropriate to an API payload. A decomposable XML

document is one in which each document element that includes sub-elements could be used as

a stand-along document to describe some resource.

 Free text should be avoided in payload elements if they must be programmatically interpreted.

Free text is difficult for an application to interpret. Unless the free text is intended for

subsequent display or human inspection, a controlled vocabulary should be used. Such a

vocabulary specifies all the possible values of a data element. If the vocabulary changes so

quickly that maintenance of the controlled vocabulary is not practical, use of free text might be

a fall back solution. Consult the TSC in this case.

 HTTP POST and PUT (Create and Update) operations must return the data that will actually be

stored by the service. This might differ from the input payload due to the assignment of

Identifiers, URI’s or other representational considerations.

 All HTTP GET (Read) and Query operations must be idempotent, that is, they cannot cause any

changes to the resources either directly or through side effects.

 MedBiquitous APIs are not required to support transactional updates, However, they must

define what happens when the same resource is updated by two REST requests that are

received concurrently.

 Batch services, those that update a set of resources rather than an individual one, are not

included in this architecture. REST services defined by MedBiquitous APIs should create or

update a single resource, although they may return a list of resources via a read operation. For

situations where the scale of the data is too large for such a single-update-at-a-time process,

MedBiquitous Application Programming Interface Architecture Service Definitions

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page11

alternatives outside of the REST API can be employed. For example, a curriculum inventory for a

medical school contains millions of records. In such a case, a separate “batch file” can be

defined (based on MedBiquitous standards) that can be uploaded via some alternative

mechanism, including an FTP upload. This is analogous to the situation in relation databases in

which the API (the SQL language) is used for programmatic interactions, but the process of

loading large sets of data into the database is done via a separate procedure, namely Extract,

Transform and Load (ETL).

 This architecture does not define how a MedBiquitous API should address advanced and highly

sophisticated REST API requirements. Such requirements are addressed by new and emerging

standards, including OData from OASIS, and JSONAPI. At this point, though both specifications

cover a broad range of requirements and each has a set of tooling available to support it, such

tooling is not mature across the languages and platforms needed by the MedBiquitous

community. MedBiquitous APIs should try to avoid complex constructs as much as possible.

Two advanced requirements will likely need to be addressed, so for these the architecture gives

the following guidance.

o Output paging (handling large returned lists of objects by accepting only a subset and

then requesting the next “page” of results) can be supported if the expected size of the

output would be difficult to process or cause unacceptable response time. Keep in mind

that paging can cause “chatty” interactions that may consume network capacity. If

needed, paging should be implemented using a client-side approach in which the API

request includes a limit on the number of objects returned. Subsequent calls can obtain

another page of output by specifying the limit and the logical index to the place in the

output that will be the start of the page (or the number of objects at the beginning of

output to skip). Note that if the resource being queried is dynamic, the pages of output

may not be consistent.

o Output filtering can be included, but should avoid advanced string matching and filter

hierarchies.

MedBiquitous Application Programming Interface Architecture API Signatures and Resource URIs

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page12

3 API Signatures and Resource URIs

3.1 URLs
All REST API service URLs should be of the form:

 {host}/medbiq/api/{api-name}/…

where {host} is the top-level URL of the provider, plus the path to the API service, and {api-name} is the

MedBiquitous standardized service. For example, for a Professional Profile service, the URL would look

like:

 {host}/medbiq/api/pprofile

This example URL references an aggregate resource, the list of all professional profiles managed by this

API provider. If a path to such an aggregate is accessed, the API should return a list of resources,

preferably with each element in the list containing the URL that can be used to access the corresponding

resource. If security rules do not allow the full list to be return to a particular client, the API can return

an authorization error and return and empty list or a list of only those for which the client has

authorization. To operate on a particular profile, say for Dr. John Doe, reference the URL

 {host}/medbiq/api/pprofile/johndoe

Note that although we use profiles as an easy to understand example, an actual professional profile API

might use much different path components.

3.2 Persistent URI’s
This architecture does not define an approach for Persistent URIs (URI’s that are guaranteed to be valid

indefinitely or at least for a long, predefined period of time). Such URI’s are beginning to be proposed to

represent reusable objects and for representing resources that describe long lasting entities. The

MedBiquitous API architecture will simply use its API versioning approach to address URI stability,

although it will not define a full Persistent URI approach. MedBiquitous working groups that are

defining APIs based on an existing outside standard that employs a Persistent URI mechanism, should

follow the approach defined by that standard. For example, the MedBiquitous profile for the Experience

API (xAPI) should follow the approach defined by the xAPI specification.

MedBiquitous Application Programming Interface Architecture Versioning

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page13

4 Versioning
MedBiquitous API’s must support a versioning strategy to maintain upward compatibility in the face of

changes. An API implementer will support different versions of an API via a different URL for each

version. The following rules apply.

1. A new version must be used with either the data model or the method definitions change. This

implies that if the resources, the logical model represented by the resource hierarchy, or the

semantics of the operations change, a new version is required. Some changes to the API are

possible without forcing a new version, but these are not common. Working groups should

consult the TSC to confirm these cases.

MedBiquitous must publish which versions of MedBiquitous API’s are currently supported. All APIs must

support at least the current version and the previous version. In the case where future revisions to the

API specification are not expected for a lengthy period of time, if at all, the working group can decide on

the appropriate time to cease requiring support for the previous version.

2.

3. Each API root path should include a version component that starts with v1 and is incremented

for each version up to v[k] for ‘k’ versions. For

example: https://webapi.test.org//medbiq/api/pprofile/v1 is Version 1 of the API

4. https://webapi.test.org//medbiq/api/pprofile/v2 is Version 2 of the API and is hosted on a

different end point.

5. The working group responsible for the API defines when a new version number should be used.

MedBiquitous Application Programming Interface Architecture Concurrency

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page14

5 Concurrency
This architecture defines a simple approach to handling concurrent requests from multiple client

applications to a single resource. When a client updates a resource, it must first check to see if it is still

operating on the most current version of that resource. This is done in a optimistic fashion using HTTP

ETag headers when using POST/PUT/DELETE methods on the resource from the client to the server. The

sequence flow of this interaction is described below for an update operation:

1. Client sends a request to the Server for a resource with a GET request.

2. Server responds with the requested resource along with a ETag header associated with the

resource as below:

 ETag: "1AB2C3D4E5D6"

3. Resource is updated on the Client side and it wants to update the resource on the Server side

and issues conditional PUT request to the resource URI with a HTTP header

 If-Match: "1AB2C3D4E5D6"

4. The server compares the value of the if-match request header to the value that represents the

latest version of the resource. If the ETag value does not match, the server responds with a HTTP Error

code 412 (Precondition Failed) response. If ETag matches, then the update operation is allowed to

proceed.

Another way a client might be using a stale version of a resource is a result of caching. Most enterprise

architectures include some sort of cache point such as a caching proxy. The ETag header approach can

deal with this case as well as illustrated in the flow below.

1. Client sends a request to the Server for a resource with a GET request.

2. Server responds with the requested resource along with a ETag header associated with the

resource to the client.

 ETag: "1AB2C3D4E5D6"

3. On subsequent requests, client issues a conditional GET request with the ETag of the resource it

received from the Server

 If-None-Match: "1AB2C3D4E5D6"

MedBiquitous Application Programming Interface Architecture Concurrency

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page15

4. Server verifies whether the ETag value supplied in the conditional GET request matches the

latest ETag value for the requested resource. If there’s a match, Server returns a 304-not modified

response to the client.

5. Client on receiving not modified response sends the cached copy of the resource to the user.

For more information see the discussion of ETags in [HTTP1.1].

MedBiquitous Application Programming Interface Architecture Binary Attachments

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page16

6 Binary Attachments
Some resources have associated with them a binary object such as an image or a PDF file. Logically this

can be seen as a binary attachment concept in an API. However, MedBiquitous APIs will not use binary

attachments, but rather will stay with pure rest concepts. The binary objects are simply objects that

have their own positions in the API resource path hierarchy. The standard REST Create, Read, Update,

and Delete operations can be performed on them. The path to a photo for a professional profile could

be:

 {host}/medbiq/api/pprofile/v1/johndoe/photo

The binary resource can also be referenced from within a resource, potentially from multiple places, via

URL references. For example, within …pprofile/johndoe a reference to the photo could be via a fully

resolved URL such as:

 “Photo”: “https://myhost/medbiq/api/pprofilev/1/johndoe/johndoephoto.jpg”

An API should allow the user to create or update a resource containing such a reference as a path

reference such as pprofile/v1/johndoe/photo. Then the API would update the reference to be a fully

resolved URL that can be directly used by the client.

Note that unlike attachments in SOAP Web services, the resource and its binary object cannot be added

or updated as a composite unit. They must be added or updated in separate REST operations. This

should not be a significant problem given the types of use cases currently projected. If a working group

identifies a use case in which the lack of atomicity is problematic, it should consult the TSC.

MedBiquitous Application Programming Interface Architecture HTTP Responses

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page17

7 HTTP Responses
REST Services must report error conditions by means of HTTP status codes. These response codes,

particularly those in the 4XX range are used by the API provider to return error information. For

particular error codes, additional information can be returned in the HTTP response body using a

common MedBiquitous error information resource. Services can also return any of the normal response

codes in the 2XX and 3XX range.

7.1 HTTP Redirection Codes
Two status codes in the 3XX range are particularly applicable to MedBiquitous APIs.

301 - Moved Permanently

Used for redirection when the location of a resource changes. This must be minimized, as discussed in

section 3.2.

304 - Not Modified

This status code is used in conjunction with the use of ETags described in section 4. This indicates the

operation can proceed since the resource has not changed on the server since the client previously read

it.

7.2 HTTP Error Codes
The following HTTP error codes should be used for API specific situations. Other codes may be returned

by Web infrastructure or security implementations.

400 - Bad Request

The client sent and invalid payload to service. This is the general HTTP error code to report application

errors such as invalid syntax in the REST payload or syntactic or semantic problems that are not covered

by other HTTP error codes.

403 - Forbidden

The client is not authorized to perform the requested operation on the resource. This error code should

be used for authorization errors rather that “401 - Unauthorized” which the Web server will used to

report authentication problems and issue authentication challenges.

404 – Not Found

The resource specified in the URL is not available or not found, but may be available in the future. This

is not to be used if the resource has been deleted. Use 410 Gone, instead.

406 - Not Acceptable

MedBiquitous Application Programming Interface Architecture HTTP Responses

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page18

The service cannot return content in the format requested by the client in the HTTP Accept headers it

sent in the request.

409 - Conflict

The service could not update a resource due to a conflict with another request. This can happen if the

resource version number (if an API uses version numbers) of the request does not match the version

number of the resource on the server, implying that the resource has been updated since the client

retrieved it.

410 - Gone

The resource does not exist. This can indicate that the resource has been deleted.

412 - Precondition Failed

ETags do not match. This is used to indicate that the resource the client is using is not the current

version.

7.3 Common Error Resource
More specific information describing the error should be included in the HTTP response and included in

the HTTP body. For error 400 especially, the service should identify the precise error in the request.

This error information must be returned in a format(XML or JSON) consistent with the Accept Header.

The common error resource is a subset of the OData V4 Error Response. If an API needs to return

additional details, it can use the full Error Response defined there. The common error resource is

defined via XML as follows.

 <error>

 <code>code</Code>

 <target>path to error in input</target>

 <message>description</message>

</error>

Where:

code (int) is an API defined error code descriptive of the specific error. Exactly one ApiErrorCode

element is allowed.

target(string) is the location of the error in the input. It must at least be the name of the object in error.

If practical, this string should be the path to the element that is in error. The path is specified as an

XPath expression for XML payloads or a JsonPointer for JSON payloads. The API should restrict Path

expressions to element names and repetition indicators. In this way, the corresponding JsonPointer

would be the same (other than namespace prefixes and the array element designation). For example, to

indicate that the second department within an institution the Path would be:

 <Location>/Institution/department[2]<Location>

MedBiquitous Application Programming Interface Architecture HTTP Responses

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page19

while the JsonPointer would be

 <Location>/Institution/2/department<Location>

Zero or one Location element is allowed.

message (string) is descriptive text meant to be read by a human, not processed by the client

application. It can be used to display an error message or to add text to an error log. Zero or one

message element is allowed

Additional elements are also allowed as needed by the API, but they should not conflict with the OData

Error Response.

MedBiquitous Application Programming Interface Architecture Security

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page20

8 Security
All interactions must that exchange personal information must be secure. At a minimum, this requires

use of HTTPS and basic authorization (encrypted Userid and Password). Working Groups can specify

higher levels of security for particular services and implementers can enforce higher security if needed.

But HTTPS with basic authorization is the minimum requirement. No exception is made for public, non-

confidential APIs due to the need for data integrity.

An authorization scheme must be implemented to assure that requestors have appropriate credentials

and authorization to read or update personal information. This architecture does not require a

particular authorization scheme or technology.

Single sign-on scenarios should conform to the MedBiquitous Single Sign-on Guidelines.

Other server-wide or enterprise-wide security solutions monitor and take action to address

attacks. Implementers should follow common best practices to avoid exposing avenues of attack in

their implementations.

8.1 Digital signatures
Digital Signatures can be included in payloads. When using digital signatures, consider the purpose of

the signature: integrity of the message content, authentication of the sender, or non-repudiation of the

message being sent. If integrity is the goal, determine if the integrity of the message content in isolation

from the header details, including the http verb and resource URI, are sufficient (see Lascelle, RESTful

Web Services and Signatures). For XML, use the W3C XML Digital Signature standard. The W3C XML

Digital Signature will effectively provide assurance of the integrity of message content.

For JSON, consider JSON Web Signature JSON Serialization (JWS-JS) http://self-issued.info/docs/draft-

jones-json-web-signature-json-serialization-01.html. JWS-JS also provides assurance of the integrity of

the message content and header details, authentication of the sender, and non-repudiation of the

message being sent.

JWS-JS incorporates keyed-hash message authentication codes (HMACs), which can create a digital

signature based on a unique key and string consisting of a number of elements from the service call or

response, including the verb and the resource URI. Some Amazon services and the Windows Azure

platform use an HMAC-based approach. In order to use an HMAC-based approach, there must be a

shared HMAC available only to a single consumer and the service provider. See RFC 2104 and RFC 6151

for more information on HMAC.

https://flascelles.wordpress.com/2010/10/02/restful-web-services-and-signatures/
https://flascelles.wordpress.com/2010/10/02/restful-web-services-and-signatures/
http://self-issued.info/docs/draft-jones-json-web-signature-json-serialization-01.html
http://self-issued.info/docs/draft-jones-json-web-signature-json-serialization-01.html

MedBiquitous Application Programming Interface Architecture Sample API

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page21

9 Sample API
This example illustrates how to specify an API based on a simplified use case involving the MedBiquitous

Professional Profile standard. Its purpose is to show how to specify REST Services, service payloads and

error information. The simple API for Certification consists of a single service to find if a professional is

certified by a particular board.

9.1 Certification API (Sample)
The Certification API exposes information about the certification of a healthcare professional via two

services. The first provides a professional’s certification status in a particular specialty and then

provides certification for all specialties for which the professional has certification information.

9.1.1 CheckCertification

This service returns the status of the certification of a particular healthcare professional relative to a

particular certification board.

Verb: GET

Path: Member/CertificationInfo/organization/id

 Where:

 organization is the community that issues a unique id

 id is the Unique ID of the professional whose certification info is requested

Output Body:

Elements Description Required Multiplicity Datatype

CertificationInfo Input Container Required 1 Container

CertificationBoard Name of Certification

board to be checked

Required 1 Non-null String

UniqueID Container for

Professional whose

certification is to be

checked

Required 1 Container

Domain Community that is the

source of the ID

Required 1 Non-null String

MedBiquitous Application Programming Interface Architecture Sample API

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page22

Elements Description Required Multiplicity Datatype

ID Unique ID of the

professional

Required 1 Non-null String

CertficationStatus Empty on input. On

output contains one of

Active, Expired,

Revoked, Suspended,

Surrendered

Required 1 Restricted

Example Output

XML:

<CertificationInfo>

 <CertificationBoard>American Board of Surgery</CertificationBoard>

 <UniqueID

 <Domain>American College of Surgeons</domain>

 <ID>21556222</ID>

 </UniqueID>

 <CertificateStatus>Active</CertificateStatus>

</CertificationInfo>

JSON:

{

 “CertificationInfo”: {

 “CertificationBoard”: “American Board of Surgery”

 “UniqueID”: {

 “Domain”: “American College of Surgeons”

 “ID” : “21556222”

 }

 “CertificateStatus” : “Active”

 }

}

Errors

Certification Board Does is unknown

HTTP Error Code 400 - Bad Request

MedBiquitous Application Programming Interface Architecture Sample API

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page23

Certification Board Does is unknown

<ErrorResource>

 <ApiErrorCode>2</ApiErrorCode>

 <Location>path to error in input</Location>

 <ErrorString>The Certification Board Does in the input URI is

unknown.</ErrorString>

</ErrorResource>

Member id is not recognized

HTTP Error Code 400 - Bad Request

<ErrorResource>

 <ApiErrorCode>4</ApiErrorCode>

 <Location>path to error in input</Location>

 <ErrorString>The member identifier in the input URI is not

recognized. The ID might be malformed or the member may not known by this

board.</ErrorString>

</ErrorResource>

MedBiquitous Application Programming Interface Architecture References

Copyright MedBiquitous Consortium 2016. All Right Reserved.
Version: 1.0 Date: October 10, 2016
Status: Final Page24

10 References

[Archer] Archer, P. (2013, June 24). Study on Persistent URIs. Retrieved December 22, 2015, from

http://philarcher.org/diary/2013/uripersistence/

[ADL Vocabulary] Advanced Distributed Learning. Companion Specification for xAPI Vocabularies.

Available at https://adl.gitbooks.io/companion-specification-for-xapi-vocabularies/content/index.html

[ADL IRI] Advanced Distributed Learning (2015). Guidelines for IRI Design and Persistence. Available at

https://docs.google.com/document/d/1RavkVwdzWQNszMXs8DMEth0bayAZRGBWWlSYVJtnC7M

[HTTP1.1] Hypertext Transfer Protocol -- HTTP/1.1, Section 14.24, If-Match,

https://tools.ietf.org/html/rfc2616#section-14.24

[MeBiq REST] REST Web Service Design Guidelines,

http://www.medbiq.org/std_specs/techguidelines/RESTguidelines.pdf

[ODataV4] OData Version 4, 2017, http://www.odata.org/documentation/

[RFC 2104] RFC 2104, HMAC: Keyed-Hashing for Message Authentication, IETF, February 1997.

https://www.rfc-editor.org/rfc/rfc2104.txt

[RFC 6151] RFC 6151, Updated Security Considerations for the MD5 Message-Digest and the HMAC-

MD5 Algorithms, IETF, March 2011. https://www.rfc-editor.org/rfc/rfc6151.txt

http://philarcher.org/diary/2013/uripersistence/
https://adl.gitbooks.io/companion-specification-for-xapi-vocabularies/content/index.html
https://docs.google.com/document/d/1RavkVwdzWQNszMXs8DMEth0bayAZRGBWWlSYVJtnC7M
https://tools.ietf.org/html/rfc2616#section-14.24
http://www.medbiq.org/std_specs/techguidelines/RESTguidelines.pdf
https://www.rfc-editor.org/rfc/rfc2104.txt
https://www.rfc-editor.org/rfc/rfc6151.txt

