

MedBiquitous
XML Schema Design Guidelines

Version 1.3

25 October 2004
MedBiquitous Technical Steering Committee

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 2

Revision History
Date Version Description Author

24 Apr 2003 0.1 Initial draft for Technical Steering
Committee

Darin McBeath
D.McBeath@elsevier.com

16 Jul 2003 1.0 Delimiter change Joel Farrell
joelf@us.ibm.com

15 Dec 2003 1.1 Namespace updates Joel Farrell
joelf@us.ibm.com

30 Apr 2004 1.2 Added XML tagging conventions to
naming conventions, added license,
updated format, put annotations inside
type definitions.

Valerie Smothers
valerie.smothers@medbiq.org

25 Oct 2004 1.3 Added guidelines for creating
extensibility points.

Joel Farrell
joelf@us.ibm.com

Scott Hinkelman
srh@us.ibm.com

mailto:valerie.smothers@medbiq.org
mailto:joelf@us.ibm.com

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 3

MedBiquitous Consortium XML Public License and Terms of Use

MedBiquitous XML (including schemas, specifications, sample documents, Web services description files, and
related items) is provided by the copyright holders under the following license. By obtaining, using, and or copying
this work, you (the licensee) agree that you have read, understood, and will comply with the following terms and
conditions.

The Consortium hereby grants a perpetual, non-exclusive, non-transferable, license to copy, use, display, perform,
modify, make derivative works of, and develop the MedBiquitous XML for any use and without any fee or royalty,
provided that you include the following on ALL copies of the MedBiquitous XML or portions thereof, including
modifications, that you make.

1. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the
following notice should be used: “Copyright © [date of XML release] MedBiquitous Consortium. All
Rights Reserved. http://www.medbiq.org”

2. Notice of any changes or modification to the MedBiquitous XML files.
3. Notice that any user is bound by the terms of this license and reference to the full text of this license in a

location viewable to users of the redistributed or derivative work.

In the event that the licensee modifies any part of the MedBiquitous XML, it will not then represent to the public,
through any act or omission, that the resulting modification is an official specification of the MedBiquitous
Consortium unless and until such modification is officially adopted.

THE CONSORTIUM MAKES NO WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, WITH
RESPECT TO ANY COMPUTER CODE, INCLUDING SCHEMAS, SPECIFICATIONS, SAMPLE
DOCUMENTS, WEB SERVICES DESCRIPTION FILES, AND RELATED ITEMS. WITHOUT LIMITING THE
FOREGOING, THE CONSORTIUM DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE AND ANY WARRANTY, EXPRESS OR IMPLIED, AGAINST
INFRINGEMENT BY THE MEDBIQUITOUS XML OF ANY THIRD PARTY PATENTS, TRADEMARKS,
COPYRIGHTS OR OTHER RIGHTS. THE LICENSEE AGREES THAT ALL COMPUTER CODES OR
RELATED ITEMS PROVIDED SHALL BE ACCEPTED BY LICENSEE “AS IS”. THUS, THE ENTIRE RISK
OF NON-PERFORMANCE OF THE MEDBIQUITOUS XML RESTS WITH THE LICENSEE WHO SHALL
BEAR ALL COSTS OF ANY SERVICE, REPAIR OR CORRECTION.

IN NO EVENT SHALL THE CONSORTIUM OR ITS MEMBERS BE LIABLE TO THE LICENSEE OR ANY
OTHER USER FOR DAMAGES OF ANY NATURE, INCLUDING, WITHOUT LIMITATION, ANY
GENERAL, DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, OR SPECIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF ANY USE OF MEDBIQUITOUS XML.

LICENSEE SHALL INDEMNIFY THE CONSORTIUM AND EACH OF ITS MEMBERS FROM ANY LOSS,
CLAIM, DAMAGE OR LIABILITY (INCLUDING, WITHOUT LIMITATION, PAYMENT OF ATTORNEYS’
FEES AND COURT COSTS) ARISING OUT OF MODIFICATION OR USE OF THE MEDBIQUITOUS XML
OR ANY RELATED CONTENT OR MATERIAL BY LICENSEE.

LICENSEE SHALL NOT OBTAIN OR ATTEMPT TO OBTAIN ANY PATENTS, COPYRIGHTS OR OTHER
PROPRIETARY RIGHTS WITH RESPECT TO THE MEDBIQUITOUS XML.

THIS LICENSE SHALL TERMINATE AUTOMATICALLY IF LICENSEE VIOLATES ANY OF ITS TERMS
AND CONDITIONS.

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 4

Table of Contents
MedBiquitous Consortium XML Public License and Terms of Use 3

1. Acknowledgements 5

2. Introduction 5
2.1 Background 5
2.2 Resources 5

3. Namespaces 5
3.1 Target 5
3.2 Default 6
3.3 xsd 6
3.4 Version 6
3.5 Chameleon 6
3.6 Example 6

4. Design Patterns 7
4.1 Russian Doll 7
4.2 Salami 7
4.3 Bologna 8
4.4 Venetian Blind 9
4.5 Garden of Eden 10
4.6 Recommendation 10

5. Qualified and Unqualified 11
5.1 elementFormDefault 11
5.2 attributeFormDefault 12

6. Elements and Attributes 13
6.1 Naming Conventions 13
6.2 Usage 14
6.3 Global and Local 14

7. Types 15
7.1 Simple Types 15
7.2 Complex Types 15
7.3 Naming Conventions 16

8. Extensibility Points 17

9. Other 18
9.1 Annotations 18
9.2 Default and Fixed Values 18
9.3 Substitution Groups and Choice 18
9.4 any and anyAttribute 18
9.5 minOccurs and maxOccurs 18

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 5

XML Schema Design Guidelines
1. Acknowledgements
These guidelines are based on a submission from Darin McBeath of Elsevier. Joel Farrell and Scott Hinkelman of
IBM also contributed to this document.

2. Introduction
This document suggests best practices and guidelines that should be followed by MedBiquitous XML Schema
designers when defining XML-based specifications.

2.1 Background
The MedBiquitous consortium is using XML and Web services as the basis for its specifications to promote the best
possible interoperability between its members. Unfortunately, the W3C specification for XML Schema is large and
complex leaving it nearly impossible for anyone to completely understand its breadth and depth. Furthermore, the
W3C offers no guidance with respect to best practices or guidelines for implementing XML Schemas within the
enterprise.

The purpose of this document is to establish high-level best practices and guidelines that should be followed by
MedBiquitous to ensure consistency across the XML Schemas that are designed. These schemas describe data that
can be exchanged between members. This document addresses many of the common features and issues pertaining
to XML Schema; obscure aspects of XML Schema will not be addressed.

As the W3C XML Schema specification continues to evolve and mature, this document will be modified
appropriately to keep pace with industry standard best practices and guidelines.

2.2 Resources
There are numerous resources available on the web that offers insight into best practices and guidelines for utilizing
XML Schema. The following resources and personal experience were used while authoring this document.

www.xfront.com Roger Costello of the Mitre Corporation maintains this site. He is well

known within the XML community for his exhaustive tutorials on XML
Schema.

www.xml.com The publisher O’Reilly supports and maintains this informative site.

www.x12.org The Accredited Standards Committee (ASC) X12 develops standards – in
X12 and XML formats – for cross-industry electronic exchange of business
information (EDI).

3. Namespaces
The following items are guidelines for defining namespaces within XML Schema definition files. After the
guidelines are discussed, a partial XML Schema definition example is presented incorporating these concepts.

3.1 Target
The XML Schema definition file should define a target namespace. The namespace should be defined as a URL that
uniquely qualifies this schema and its definitions.

Each MedBiquitous schema will have its own namespace. This provides a standard way to avoid name collisions
between schemas that may be embedded in other XML schema definitions. The namespace string will be a URL,
and will be constructed by means of a hierarchical organization that corresponds to the owning group within the

http://www.xfront.com/
http://www.xml.com/
http://www.x12.org/

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 6

MedBiquitous consortium.

The root URL string will be http://ns.medbiq.org. This is followed by a working group qualifier (if necessary),
schema qualifier, and a version specification. The version specification will be defined below.

Example:

targetNamespace=″http://ns.medbiq.org/journals/v1/″

The namespace URL may provide a document that points to the schema and specifications locations, but this is not
guaranteed.

3.2 Default
The XML Schema definition file should define a default namespace that is equal to the target namespace. In other
words, XML Schema should not be the default namespace.

Example:

xmlns=″http://ns.medbiq.org/journals/v1/″

3.3 xsd
Within the XML Schema definition file, the namespace prefix for XML Schema should be xsd. XML Schema
should not be the default namespace.

Example:

xmlns:xsd=″http://www.w3.org/2001/XMLSchema″

3.4 Version
The default and target namespaces defined in the XML Schema definition file must include a version identification
value. The value is string composed the character v followed by a number. Whenever the schema is changed, the
version number must be incremented.

The initial public version of a schema will be version v1.

Example:

targetNamespace=″http://ns.medbiq.org/journals/v1/″

3.5 Chameleon
Avoid creating XML Schema definition files with no target namespace (“chameleon”). Although chameleon
schemas offer flexibility, validation performance is degraded since most parsers will not be able to cache
components of the schema based on the namespace. In addition, care must be exercised to avoid symbol collisions
when a chameleon schema is included within another schema.

3.6 Example
The following XML fragment incorporates all of the guidelines discussed in this section.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://ns.medbiq.org/journals/v1/"

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 7

xmlns="http://ns.medbiq.org/journals/v1/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
...

4. Design Patterns
As with software design, there are design patterns associated with XML Schema design. The most popular XML
Schema design patterns are Russian Doll, Salami, Bologna, Venetian Blind, and Garden of Eden. They each have
different characteristics that will be analyzed (and basic advantages and disadvantages listed) before concluding
with the recommended design pattern.

To understand the following design patterns, it is necessary to differentiate between a global component (element or
type) and a local component (element or type). A global component is an immediate child of the <schema>
element in the XML Schema definition file. A local component is not an immediate child of the <schema>
element in the XML Schema definition file. Global components are associated with the target namespace of the
schema and may be reused in other schema.

It is also important to understand that any element defined in the global namespace can be the root for a valid XML
instance document adhering to the schema defined for that namespace.

4.1 Russian Doll
The Russian Doll design corresponds to having a single global element that nests local elements (that nest further
local elements). Only one element, considered the root, is defined within the global namespace.

Example:

<xsd:schema>
 <xsd:element name="Couple">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Husband" type="xsd:string"/>
 <xsd:element name="Wife" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Advantages:

• Since there is only one global element, there is only one valid XML document.
• Namespace complexity is potentially1 localized since Husband and Wife are both defined within the local

namespace.

Disadvantages:

• The reusability of the schema definition is limited to the single globally defined element.

4.2 Salami
The Salami design corresponds to having all of the elements defined within the global namespace and then
referencing the elements.

1 The namespace complexity is potentially localized depending on the value of the elementFormDefault attribute. This will be discussed further

later in the document.

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 8

Example:

<xsd:schema>
 <xsd:element name="Husband" type="xsd:string"/>

 <xsd:element name="Wife" type="xsd:string"/>

 <xsd:element name="Couple">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Husband"/>
 <xsd:element ref="Wife"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Advantages:

• All elements are defined in the global namespace and are therefore reusable.

Disadvantages:

• Since there are many global elements, there are many valid XML documents. Any element defined in the
global namespace can be used as the root element for a valid XML document.

• Namespace complexity is exposed since Husband and Wife are both defined within the global namespace.

4.3 Bologna 2
This is the Oscar Mayer of design patterns since it contains a little bit of everything. Essentially the person who
uses this pattern has no idea what they are doing since they randomly use a combination of global and local elements
for no obvious gains or benefits. This pattern should be avoided at all cost.

Example:

<xsd:schema>
 <xsd:element name="Husband" type="xsd:string"”/>

 <xsd:element name="Couple">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="Husband"/>
 <xsd:element name="Wife" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Advantages:

2 One of the authors of this document coined this term based on his early attempts to design XML Schema definition files. He has since seen the

light and now evangelizes the importance of good schema design patterns.

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 9

• None, other than it works … much like a computer program compiles.

Disadvantages:

• Too many to list.

4.4 Venetian Blind
Similar to the Russian Doll, the Venetian Blind design corresponds to having a single global element that nests local
elements (that nest further local elements). Only one element, considered the root, is defined within the global
namespace. However, the local elements use types (simple or complex) that are defined within the global
namespace.

Example:

<xsd:schema>
 <xsd:simpleType name="Husband">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="Wife">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:element name="Couple">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Husband" type="Husband"/>
 <xsd:element name="Wife" type="Wife"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Advantages:

• The reusability of the schema definition is available for all types and the single root element defined in the
global namespace.

• Namespace complexity is potentially3 localized since Husband and Wife are both defined within the local
namespace.

• Since there is only one global element, there is only one valid XML document.

Disadvantages:

• No major disadvantages.

3 The namespace complexity is potentially localized depending on the value of the elementFormDefault attribute. This will be discussed further

later in the document.

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 10

4.5 Garden of Eden
The Garden of Eden is a combination of the Venetian Blind and Salami. All elements and types are defined in the
global namespace with the elements referenced as needed.

Example:

<xsd:schema>
 <xsd:simpleType name="Husband">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:element name="Husband" type=”Husband”>

 <xsd:simpleType name="Wife">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:element name="Wife" type=”Wife”>

 <xsd:element name="Couple">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref=”Husband”/>
 <xsd:element name=”Wife”/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Advantages:

• The reusability of the schema definition is available for all types and all elements defined in the global
namespace.

Disadvantages:

• Since there are many global elements, there are many valid XML documents.
• Namespace complexity is exposed since Husband and Wife are both defined within the global namespace.

4.6 Recommendation
Venetian Blind is the preferred design pattern. The benefits of a reusable type definitions coupled with a single
‘root’ element in the global namespace provide MedBiquitous with the control and reusability necessary in the
messaging interface definitions.

Of course, there are always exceptions. The common schema definition file will likely be just a collection of simple
and complex types and no actual element definitions. Without the global root element, this schema does not
explicitly adhere to the Venetian Blind design pattern. It is also possible (and likely) that most services will receive
multiple request payloads and produce multiple response payloads. In this situation, multiple root elements would
be defined in the global namespace for the request and response schemas (one for each type of request and

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 11

response). Although this violates the purist definition of the Venetian Blind design pattern (more than one element
in the global namespace), the practicality of this approach outweighs any disadvantages.

5. Qualified and Unqualified
When a schema definition file is created, there are two attributes (elementFormDefault and attributeFormDefault) of
the schema element that should be specified. Although specified in the schema definition file, the impact of these
settings is not obvious until an XML instance document is constructed.

5.1 elementFormDefault
Assume the following schema definition file. Note that elementFormDefault is set to qualified. This ‘switch’
implies that all schema instance files must qualify the namespace of all elements regardless of whether the element
is defined in a global or local namespace.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema targetNamespace="http://www.darin.com/example/v1"
 xmlns=" http://www.darin.com/example/1"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <xsd:simpleType name="Husband">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="Wife">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:element name="Couple">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Husband" type="Husband"/>
 <xsd:element name="Wife" type="Wife"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

A valid XML instance file for the above schema follows. A default namespace was not used (which is not
recommended) to show the impact of the elementFormDefault setting.

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 12

<?xml version="1.0" encoding="UTF-8"?>
<ex:Couple xmlns:ex=" http://www.darin.com/example/v1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.darin.com/example
 E:\Xquery\example.xsd">
 <ex:Husband>Darin</ex:Husband>
 <ex:Wife>Darby</ex:Wife>
</ex:Couple>

Now, assume the original schema definition file is altered so elementFormDefault now contains the value
unqualified. A valid XML instance file for this change is listed below. Once again, a default namespace was not
used to show the impact of the elementFormDefault setting. With this setting, only the elements defined in the
global namespace must be namespace qualified.

<?xml version="1.0" encoding="UTF-8"?>
<ex:Couple xmlns:ex=" http://www.darin.com/example/v1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.darin.com/example
 E:\Xquery\example.xsd">
 <Husband>Darin</Husband>
 <Wife>Darby</Wife>
</ex:Couple>

Industry best practices recommend using the first option where the elementFormDefault value is set to qualified.
Since the default namespace for the schema instance should normally be specified, the resulting schema will not be
as verbose as the example listed above. Furthermore, by fully qualifying the schema, it is obvious what namespace
to associate with a given element.

Another justification for qualifying the namespace is to improve performance. Often, when processing an instance
document, the namespace is required to determine how an element should be processed. If the namespace is hidden
(or unqualified), then the application must lookup the element in the schema definition file for the element, which
results in slower performance.

5.2 attributeFormDefault
This attribute setting should always be set to unqualified. The time to justify the setting of this value is not worth
any incremental value in the understanding of this concept. Industry best practices recommend always setting this
attribute value to unqualified.

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 13

6. Elements and Attributes
The following guidelines relate to elements and attributes within XML Schema definition files.

6.1 Naming Conventions
Naming conventions are based on the XML tagging guidelines from the Open Travel Association Group (OTA)
(http://www.opentravel.org/) and from the ebXML (http://www.oasis-open.org/).

A key part of the XML grammar is consistent naming conventions for tags that represent the infrastructure and
business-related elements. Tag name writers MUST follow these rules unless business requirements require other
naming conventions.

Naming Conventions
Rule Description Example

Element and Type
Case

Elements and types should be defined
using upper camel case.

<PostalCode>

Attribute Case Attributes should be defined using lower
camel case.

<Degree
discipline=″Chemistry″>

Acronyms Acronyms are discouraged, but where
needed, use all upper case.

<UserID>

Illegal Characters Illegal characters cannot be used (e.g.:
forward slash, etc.). Recommended
characters in a tag name are basically
limited to letters and underscores.

NOT allowed:
<Date/Time>

Allowed:
<DateTime>

Similar Names Use the similar tag names with elements in
a similar child structure.

<ContactAddress>
<HomeAddress>
<WorkAddress>

Plural Names Use plural tag names only for collections. <CreditCards>
 <CreditCard>

Name Size Element and attribute name size have no
limitation. The names must be meaningful.

<CustomerRelationshipInformation>

Suffixes Element and attribute names should
incorporate suffixes from the proposed list
of representation types (adapted from
ebXML) when appropriate. See the Tag
Suffixes table for the proposed
representation types.

<StartDate>
<BilledAmount>

Tag Suffixes
Representation Type Description

Amount A number of monetary units specified in a currency where the unit of currency is
explicit or it may be implied.

Code A character string that represents a member of a set of values.

Boolean An enumerated list of two, and only two, values which indicates a Condition
such as on/off; true/false etc. (It was the general consensus to use ‘Flag’ as a term

http://www.opentravel.org/
http://www.oasis-open.org/

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 14

Representation Type Description

to indicate a Boolean value.)

Date A day within a particular calendar year. Note: Reference ISO 8601.

Time The time within any day in public use locally, independent of a particular day.
Reference ISO 8601:1988.

DateTime A particular point in the progression of time. Note: This may incorporate
dependent on the level of precision, the concept of date.

Identifier (standard abbreviation ID, meaning a unique identifier) A character string used
to identify and distinguish uniquely, one instance of an object within an
identification scheme.

Name A word or phrase that constitutes the distinctive designation of a person, object,
place, event, concept etc.

Quantity A number of non-monetary units. It is normally associated with a unit of
measure.

Number A numeric value which is often used to imply a sequence or a member of a
series.

Rate A ratio of two measures.

Text A character string generally in the form of words.

Measure A numeric value that is always associated with a unit of measure.

6.2 Usage
In general, use elements for data that will be produced or consumed by an application and attributes for metadata.
A good rule of thumb is to use elements for nouns and attributes for adjectives. In the early days of Web services,
there was a push to avoid attributes in schema definitions of messaging interfaces because of SOAP encoding issues.
However, MedBiquitous has adopted a literal encoding4 approach (doc-literal) that alleviates this issue.

6.3 Global and Local
With the adoption of the Venetian Blind design pattern, only the root element should be defined in the global
namespace. All other elements should be defined in the local namespace and use named types that are defined in the
global namespace. Since attributes are associated with an element, they should normally be defined locally within
the context of the element.

4 Literal encoding is also endorsed by Web Services Interoperability (WS-I).

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 15

7. Types
The following guidelines relate to simple and complex types within XML Schema definition files. As a general
rule, types should always be defined in the global namespace and then used by the local elements. This approach
supports the Venetian Blind design strategy. Consequently, named types should be used instead of anonymous
types.

7.1 Simple Types
When appropriate, simple data types defined in the XML Schema data model should be used (and potentially
restricted or extended) rather than creating a user defined complex data type. Restriction of a simple type reduces
the possible values of the type while extension allows one to create a complex type with simple content that has
attributes.

Example:

 If a date value is needed, use

<xsd:element name="Date" type="xsd:date"/>

 instead of

<xsd:complexType name="Date">
 <xsd:sequence>
 <xsd:element name="Month" type="xsd:integer"/>
 <xsd:element name="Day" type="xsd:integer"/>
 <xsd:element name="Year" type="xsd:integer"/>
 </xsd:sequence>
</xsd:complexType>

The correct simple type defined in the XML Schema data model should also be used.

Example:

 If a date value is needed, use

<xsd:element name="Date" type="xsd:date"/>

 instead of

<xsd:element name="Date" type="xsd:string"/>

7.2 Complex Types
Complex types should be extended but not restricted. Extension involves adding extra attributes or elements to a
derived type. Derivation by restriction of complex types should be avoided because the WXS specification is
complex in this area and implementations are error prone.

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 16

Example:

 Base Type

<xsd:complexType name=”BaseAddress”>
 <xsd:sequence>
 <xsd:element name=”State” type=”xsd:string”/>
 </xsd:sequence>
</xsd:complexType>

 Derived Type

<xsd:complexType name=”NewAddress”>
 <xsd:extension base=”BaseAddress”>
 <xsd:sequence>
 <xsd:element name=”City” type=”xsd:string”/>
 </xsd:sequence>
 </xsd:extension>
</xsd:complexType>

7.3 Naming Conventions

Both complex and simple types should be defined using upper camel case.

Example:

<xsd:simpleType name="Wife">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
</xsd:simpleType>

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 17

8. Extensibility Points
MedBiquitous schemas may include an extensibility points to allow members to address situations where the
standard format is insufficient to meet some special need. This is done using the XML Schema element xsd:any, that
allows any element to be included. XML Schema design language provides up to five extension mechanisms.
Wildcard extensions are the only approach where an extended instance document is valid against the original
schema definition, and a core reason why this approach is recommended.

Working groups may choose whether to include a single point of extensibility or to allow extensibility at multiple
points in the schema. Where to put extensibility points is highly dependent on the domain being modeled by the
schema and the final decisions will have to be made by the experts in the working group. A few simple guidelines
should be followed when making these decisions.

1. Schemas or sections of schemas that define well-established or fundamental content need not contain

extensibility points.
2. Schemas or sections of schemas that attempt to codify a new or dynamic area of content should use extensibility

points throughout.
3. If a schema is generally modeling stable, well-understood content, but some flexibility is desired for unforeseen

cases, a single extensibility point can be defined.
4. Only elements from a namespace different from the document namespace should be allowed in the extension.

This restriction is specified in XML Schema as:

 <xsd:any namespace="##other"/>

A namespace constraint set to ##other avoids content collision and non-deterministic content models.

MedBiquitous also defines guidelines concerning how extension points should be used.

1. A extension should not repackage or subset existing information in the XML document. The extensions
should be additional information added to the content model of the element being extended.

2. It is appropriate to require that the extensions be understood by a particular partner with which the extended
instance documents will be exchanged. However, if the document is sent to a general MedBiquitous
member with which no special agreements are in place (one that has no knowledge of the extension) the
receiver must not be expected to process the extensions.

MedBiquitous encourages members that extend the formal schemas to engage in review of such extensions
within the MedBiquitous working groups after the extensions have been exercised in production for
potential inclusion into the formal specifications if the workgroup sees fit to do so.

MedBiquitous Version: 1.3
XML Schema Design Guidelines Date: 25 Oct 2004

 MedBiquitous Consortium, 2004 Page 18

9. Other
The following guidelines are a collection of miscellaneous items that do not cleanly fit into any specific category.

9.1 Annotations
Annotations are a mechanism for documenting a schema definition file. A standard best practice is to document the
complex types defined in the XML Schema definition file. Standard XML style comments should be avoided.

Example:

<xsd:simpleType name="Husband">
 <xsd:annotation>
 <xsd:documentation xml:lang=”en”>
 This is a complex type that defines the name of the husband
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 </xsd:restriction>
</xsd:simpleType>

9.2 Default and Fixed Values
The main issue with default and fixed values is the dependency on the validation of the schema document. In other
words, a schema with default or fixed values is incomplete if the schema instance is not validated against the schema
definition file. Because it is not safe to depend on validation since there is no control over whether the consumer of
the document will actually perform validation, default and fixed values should be avoided.

9.3 Substitution Groups and Choice
Since the Venetian Blind design pattern is recommended, the ability to utilize substitution groups is eliminated since
substitution groups minimally depend on all elements (candidates for the substitution) be defined in the global
namespace. In place of substitution groups, the choice option should be used. While this sacrifices extensibility to a
certain extent, the gains in simplicity and maintainability offset this benefit. There is also a lack of support for
substitution groups in the current JAXB specifications.5

9.4 any and anyAttribute
The any element and anyAttribute attribute are provided for schema extensibility. Rather than support schema
extensibility through this approach, it is recommended that new schema versions be created as necessary and that
old interfaces (versions) be supported for a period of time to prevent the need for a lock-step coordination with
clients and services.

9.5 minOccurs and maxOccurs
The default value for both of these attributes is 1. Do not pollute the XML Schema definition file with these
attributes if the default values are to be used.

5 JAXB specifies a partial support of XML Schema making redefinitions, type substitutions, substitution groups, and derivation control attributes

optional for JAXB implementations.

	MedBiquitous Consortium XML Public License and Terms of Use
	Acknowledgements
	Introduction
	Background
	Resources

	Namespaces
	Target
	Default
	xsd
	Version
	Chameleon
	Example

	Design Patterns
	Russian Doll
	Salami
	Bologna
	Venetian Blind
	Garden of Eden
	Recommendation

	Qualified and Unqualified
	elementFormDefault
	attributeFormDefault

	Elements and Attributes
	Naming Conventions
	Usage
	Global and Local

	Types
	Simple Types
	Complex Types
	Naming Conventions

	Extensibility Points
	Other
	Annotations
	Default and Fixed Values
	Substitution Groups and Choice
	any and anyAttribute
	minOccurs and maxOccurs

